



**6**a

like this one:

## Collatz conjecture ( Syracuse problem) ( 3x + 1 algorithm ) The Collatz conjecture is one of the most famous problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will transform every positive integer into 1 It's a sequence of numbers in which each term is obtained from the previous as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1.

It is a safe bet that the researchers carried out the first calculations on Curta,

The 3x + 1 algorithm became widespread in the 1950s and 60s.



| 255                                          | Setting         | Carriage/Inverter | Turns      | Counter     | Product |
|----------------------------------------------|-----------------|-------------------|------------|-------------|---------|
|                                              | Clear           | Ť                 |            | Clear       | Clear   |
| First number is odd : Set and multiplie by 3 | 8 7 6 5 4 3 2 1 | 6 5 4 3 2 7       | 3 <b>+</b> | 3           | 7 6 5   |
| Add 1. In PR: U <sub>+1</sub> = 3U + 1       | 7               | 7                 | +          | 4           | 766     |
|                                              |                 | Ţ                 |            | Clear       |         |
| Division by subtractive method               | 2               | 3 > 1             | 14 —       | 3 8 3       |         |
| Multiplie by 3 by bringing CR to 0           | 3               | 3 < 1             | 14 +       | 0 0 0       | 1 1 4 9 |
| Add 1 to result                              | 1               | 1                 | +          | 9 9 9 9 9 9 | 1 1 5 0 |
|                                              |                 |                   |            | Clear       |         |
| Division by subtractive method               | 2               | 3 > 1             | 17 —       | 5 7 5       |         |
| Multiplie by 3 by bringing CR to 0           | 3               | 3 < 1             | 17 +       | 0 0 0       | 1 7 2 5 |
| Add 1 to result                              | 1               | 1                 | +          | 9 9 9 9 9 9 | 1726    |
|                                              |                 |                   |            | Clear       |         |



a

|                                    | Setting |   | Carriage/Inve | rter | Turns | (   | Coun | nter  | Product   |
|------------------------------------|---------|---|---------------|------|-------|-----|------|-------|-----------|
| Division by subtractive method     |         | 2 | 3 >           | 1    | 17 —  |     |      | 8 6 3 |           |
| Multiplie by 3 by bringing CR to 0 |         | 3 | 3 <           | 1    | 17 +  |     |      | 0 0 0 | 2 5 8 9   |
| Add 1 to result                    |         | 1 |               | 1    | +     | 9 9 | 9    | 9 9 9 | 2 5 9 0   |
|                                    |         |   |               |      |       |     | Cle  | ar    |           |
| Division by subtractive method     |         | 2 | 4 > >         | 1    | 17 +  |     | 1    | 2 9 5 |           |
| Multiplie by 3 by bringing CR to 0 |         | 3 | 4 < <         | 1    | 17 +  |     | 0    | 0 0 0 | 3 8 8 5   |
| Add 1 to result                    |         | 1 |               | 1    | +     | 9 9 | 9    | 9 9 9 | 3 8 8 6   |
|                                    |         |   |               |      |       |     | Cle  | ar    |           |
| Division by subtractive method     |         | 2 | 4 > >         | 1    | 17 +  |     | 1    | 9 4 3 |           |
| Multiplie by 3 by bringing CR to 0 |         | 3 | 4 < <         | 1    | 17 +  |     | 0    | 0 0 0 | 5 8 2 9   |
| Add 1 to result                    |         | 1 |               | 1    | +     | 9 9 | 9    | 9 9 9 | 5 8 3 0   |
|                                    |         |   |               |      |       |     | Cle  | ar    |           |
| Division by subtractive method     |         | 2 | 4 > >         | 1    | 17 +  |     | 2    | 9 1 5 |           |
| Multiplie by 3 by bringing CR to 0 |         | 3 | 4 < <         | 1    | 17 +  |     | 0    | 0 0 0 | 8 7 4 5   |
| Add 1 to result                    |         | 1 |               | 1    | +     | 9 9 | 9    | 9 9 9 | 8746      |
|                                    |         |   |               |      |       |     | Cle  | ar    |           |
| Division by subtractive method     |         | 2 | 4 > >         | 1    | 17 —  |     | 4    | 3 7 3 |           |
| Multiplie by 3 by bringing CR to 0 |         | 3 | 4 < <         | 1    | 17 +  |     | 0    | 0 0 0 | 1 3 1 1 9 |
| Add 1 to result                    |         | 7 |               | 1    | +     | 9 9 | 9    | 9 9 9 | 1 3 1 2 0 |

a

| Setting | Carriage/Inverter | Turns                                           | Counter     | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|-------------------|-------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                   |                                                 | Clear       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 2 4 > 2           | 17 —                                            | 6 5 6 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Ť                 |                                                 | Clear       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 2 4 > 2           | 13 +                                            | 3 2 8 0     | 6 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                   |                                                 | Clear       | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 2 4 > 2           | 13 +                                            | 1640        | 3 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                   |                                                 | Clear       | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 2 3 2             | 10 +                                            | 8 2 0       | 1 6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                   |                                                 | Clear       | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 2 3 2             | 5 <b>+</b>                                      | 4 1 0       | 8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                   |                                                 | Clear       | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 2 4 > > 1         | 7 +                                             | 2 0 5       | 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                   |                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                   |                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                   |                                                 | Clear       | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 2 1               | 4 +                                             | . Clear     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 2 1               | 4 +                                             |             | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 2 1               | 4 <b>+</b> 2 <b>+</b>                           | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                   |                                                 | Clear Clear |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                   | 2 4 > 2<br>2 4 > 2<br>2 4 > 2<br>2 3 2<br>2 3 2 | 2           | Clear   Clea |

Bernard Stabile - 2023

| The golden | ratio | with | the | Fibonacci | sequence |
|------------|-------|------|-----|-----------|----------|
|------------|-------|------|-----|-----------|----------|

| Φ = Ś                                                                        | Carriage/Inverter | Product                             | Setting                 | Turns | Counter |
|------------------------------------------------------------------------------|-------------------|-------------------------------------|-------------------------|-------|---------|
|                                                                              | 1                 | Clear                               | Clear                   |       | Clear   |
| Exploring the Fibonacci sequence $F_n  =  F_{\text{n-1}}  +  F_{\text{n-2}}$ | 8 7 6 5 4 3 2 1   | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 | 11 10 9 8 7 6 5 4 3 2 1 | +     | 1       |
| 2                                                                            | 7                 | 1                                   | 1 > > > > 7             | +     | 2       |
| 3                                                                            | 1                 | 2 1 2                               | · > > > 1 > > > > 1     | +     | 3       |
| Right of SR in left of SR then Left of PR in right of SR                     | 1                 | 3 2                                 | . > > > 2               | +     | 4       |
| 5                                                                            | 1                 | 5 3                                 | 2 > > > > 2             |       |         |
| Same method to develop the Fibonacci sequence                                | 1                 | 5 3 >                               | 2                       | +     | 5       |
| 7 without having to note                                                     | 1                 | 8 5                                 | 3 > > > > 3             |       |         |
| 8 The golden ratio Ф is calculated                                           | 1                 | 8 5 >                               | 3                       | +     | 6       |
| by dividing a number in the Fibonacci sequence                               | 7                 | 1 3 8                               | 5 > > > > 5             |       |         |
| by the one preceding it                                                      | 1                 | 7 3 8 >                             | > > > 8 5               | +     | 7       |
| $\Phi = F_n = F_{n-1}$                                                       | 1                 | 2 1 1 3                             | 8 > > > > 8             |       |         |
| 12                                                                           | 7                 | 2 1 1 3 >                           | ·                       | +     | 8       |
| The result becomes more and more precise as we advance in the sequence       | 1                 | 3 4 2 1                             | 1 3 > > > > 1 3         |       |         |
| 14                                                                           | 7                 | 3 4 2 1 3                           | · > > <mark>2 1</mark>  | +     | 9       |
| The golden ratio is also given by the formula:                               | 7                 | 5 5 3 4                             | 2 1 > > > > 2 1         |       |         |
| 16                                                                           | 7                 | 5 5 3 4 >                           | > > > 3 4 2 1           | +     | 1 0     |
| $\Phi = \frac{1 + \sqrt{5}}{2}$                                              | 7                 | 8 9 5 5                             | 3 4 > > > > 3 4         |       |         |
| 18                                                                           | 7                 | 8 9 5 5                             | 3 4                     | +     | 1 1     |
| 19                                                                           | 1                 | 1 4 4 8 9                           | 5 5 > > > 5 5           |       |         |

| )  |                                                                                                                                         | Carriage/Inverter | Product                     |                      | Setting              | Turns       | Counter   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|----------------------|----------------------|-------------|-----------|
| 20 |                                                                                                                                         | 1                 | 1 4 4                       | 8 9 > >              | > 89 55              | +           | 1 2       |
| 21 |                                                                                                                                         | 1                 | 2 3 3                       | 1 4 4                | 8 9 > > > > 8 9      |             |           |
| 22 |                                                                                                                                         | 1                 | 2 3 3                       | 1 4 4 > > >          | 1 4 4 8 9            | +           | 1 3       |
| 23 |                                                                                                                                         | 1                 | 377                         | 2 3 3                | 1 4 4 > > > > 1 4 4  |             |           |
| 24 |                                                                                                                                         | 1                 | 3 7 7                       | 2 3 3 > > >          | 2 3 3 1 4 4          | +           | 1 4       |
| 25 |                                                                                                                                         | 1                 | 610                         | 3 7 7                | 2 3 3 > > > 2 3 3    |             |           |
| 26 |                                                                                                                                         | 1                 | 6 1 0                       | 3 7 7 > > >          | 3 7 7 2 3 3          | +           | 1 5       |
| 27 | 8                                                                                                                                       | 7                 | 987                         | 6 1 0                | 3 7 7 > > > 3 7 7    |             |           |
| 28 | 13                                                                                                                                      | 1                 | 9 8 7                       | 6 1 0 > > >          | 6 1 0 3 7 7          | +           | 1 6       |
| 29 | $\left(\begin{array}{ccc} 2 & 1 \\ \hline 3 & 5 \end{array}\right)$                                                                     | 1                 | 1597                        | 987                  | 6 1 0 > > > 6 1 0    |             |           |
| 30 |                                                                                                                                         | 7                 | 1 5 9 7                     | 987>>>               | 987 610              | +           | 1 7       |
| 31 |                                                                                                                                         | 1                 | 2584                        | 1 5 9 7              | 987>>> <b>987</b>    |             |           |
| 32 |                                                                                                                                         | 1                 | 2 5 8 4                     | 1 5 9 7 > > 1        | <b>597</b> 987       | +           | 1 8       |
| 33 |                                                                                                                                         | 1                 | 4 1 8 1                     | 2 5 8 4 1            | 5 9 7 > > 1 5 9 7    |             |           |
| 34 |                                                                                                                                         | 1                 | 4 1 8 1                     | 2 5 8 4 > > 2        | 584 1597             | +           | 1 9       |
| 35 |                                                                                                                                         | 1                 | 6765                        | 4 1 8 1 2            | 5 8 4 > > > 2 5 8 4  |             |           |
| 36 |                                                                                                                                         | 1                 | Clear right hand            |                      | Clear left hand      |             | Clear     |
| 37 | Set the right hand of PR in right hand of SR                                                                                            | 8 7 6 5 4 3 2 1   | 6765                        |                      | 4 1 8 1              |             |           |
|    |                                                                                                                                         | <b>A</b>          | 15 14 13 12 11 10 9 🔺 7 6 5 | 4 3 2 1 11           | 10 9 8 7 6 5 4 3 2 1 |             |           |
| 38 | Division by subtractive method. (See 1 Cc)  Decimal rule for division  dpPR - dpSR = dpR, 5 - 0 = 5  Result, the golden ratio: 1.618039 | 8 > 6 > 3 > 1     | 15 14 13 12 11 10 9 🛦 7 6 5 | <b>2 6 4 1 1 1 1</b> | 10 9 8 7 6 5 4 3 2 1 | 31 <b>+</b> | 1,6180339 |

## Multiplication by the Vedic method

Here is an algorithm inspired by a calculation method described in the Hindu Vedic mathematical writings. It is certain that it becomes long beyond three digits, but we only use one cursor in SR. In addition, the calculation with the Curta generates a curiosity with the division of the result by the figure in CR.

|   | 456 x 123                                                                                                                                                                                                                                                                                                    | Setting                              | Carriage/Inverter | Turns      | Counter   | Product                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|------------|-----------|----------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                                                              | Clear                                | Ť                 |            | Clear     | Clear                                                    |
| 1 | Set the first figure of the first factor Develop the second factor in CR                                                                                                                                                                                                                                     | 11 10 9 8 7 6 5 4 3 2 1              | 8 < 6 5 4 3 2 1   | 6 <b>+</b> | 1 2 3     | 15 14 13 12 11 10 9 A 7 A 5 4 3 2 1                      |
| 2 | Set the second figure of the first factor Develop the second factor in CR without clearing                                                                                                                                                                                                                   | 11 10 9 8 7 6 5 4 3 2 1              | 8 7 > 5 4 3 2 1   | 3 <b>+</b> | 1 3 5 3   | 15 14 13 12 11 10 9 8 <b>A</b> 6 <b>A</b> 4 3 2 1        |
| 3 | 4 5 6<br>1 2 3                                                                                                                                                                                                                                                                                               | 11 10 9 8 7 6 5 4 3 2 1              | 8 7 6 < 4 3 2 1   | 3 <b>+</b> | 1 3 6 5 3 | 15 14 13 12 11 10 9 8 7 <b>A</b> 5 <b>A</b> 3 2 <b>1</b> |
| 4 |                                                                                                                                                                                                                                                                                                              |                                      | 1                 |            | Clear     |                                                          |
| 5 | Set the figure in CR Division by subtractive method. (See 3c) We obtain a number with periodic decimal places $56088 \div 13653 = 4.1081081$ This is because in CR we obtain the product of the multiplicand by 111 By adding the figures of the period up to the last, we will always obtain 9, (1 + 0 + 8) | 1 3 6 5 3<br>11 10 9 8 7 6 5 4 3 2 1 | 8 > 6 > 3 > 1     | 23 +       | 4,1081081 | 1 1 0 7<br>15 14 13 12 11 10 9 8 7 6 5 4 3 2 A           |

Bernard Stabile - 2023



## Converting a decimal number to binary

A little revenge for Curta. It is quite easy to transform a binary number to decimal. The opposite is more complicated.

Here is an algorithm that allows Curta to do it simply.

Those who practice computing are familiar with this power of '2' sequence. 128 64 32 16

With a type II, we go up to 128, and with a type I, up to 32.

|    | a = 207                                                                                  | Setting                 | Carriage/Inverter | Turns | Counter         | Product                                   |
|----|------------------------------------------------------------------------------------------|-------------------------|-------------------|-------|-----------------|-------------------------------------------|
|    |                                                                                          | Clear                   | t                 |       | Clear           | Clear                                     |
| 1  | Determine a in binary Starting from the first number < a in the sequence: 128 Carriage 8 | 11 10 9 8 7 6 5 4 3 2 1 | 8 7 6 5 4 3 2 1   | +     | 1               | 15 14 13 12 11 10 9 A 7 6 5 4 3 2 1       |
| 2  | Shift the next digit in the series in SR at the same time as the Carriage                | 1 2 8 6 4               | 7                 | +     | 1 1             | 1 9 2                                     |
| 3  | Overflow with 32                                                                         | 3 2                     | 6                 | +     | 1 1 1           | 2 2 4                                     |
| 4  | Negative turn                                                                            | 3 2                     | 6                 | _     | 1 1 0           | 1 9 2                                     |
| 5  | Overflow again with 16                                                                   | 1 9 2                   | 5                 | +     | 1 1 0 <b>1</b>  | 208                                       |
| 6  | Negative turn                                                                            | 7 6                     | 5                 | _     | 1 1 0 0         | 1 9 2                                     |
| 7  | Continue in the same way                                                                 | 8                       | 4                 | +     | 1 1 0 0 1       | 2 0 0                                     |
| 8  |                                                                                          | 2 0 0 4                 | 3                 | +     | 1 1 0 0 1 1     | 2 0 4                                     |
| 9  |                                                                                          | 2 0 4                   | 2                 | +     | 1 1 0 0 1 1 1   | 2 0 6                                     |
| 10 | Here is 207 in 8-bit binary in CR: 11001111                                              | 11 10 9 8 7 6 5 4 3 2 1 | 8 7 6 5 4 3 2 1   | +     | 1 1 0 0 1 1 1 1 | 2 0 7 15 14 13 12 11 10 9 8 7 6 5 4 3 2 A |



## Converting a binary number to decimal We can, of course, do the opposite

|   | 11001111 = \$                                                             | Setting Carriage/Inv |                 | Turns      | Counter         | Product                                   |
|---|---------------------------------------------------------------------------|----------------------|-----------------|------------|-----------------|-------------------------------------------|
|   |                                                                           | Clear                | <b>†</b>        |            | Clear           | Clear                                     |
| 1 | Develop the binary number in CR                                           |                      | 8 < 6 < > 3 > 1 | 6 <b>+</b> | 1 1 0 0 1 1 1 1 |                                           |
| 2 | Determine 11001111 in decimal The CR will serve as a control. Carriage 1  | 1                    | 7               | +          | 1 1 0 0 1 1 1 2 | 7                                         |
| 3 | Shift the next digit in the series in SR at the same time as the Carriage | 2                    | 2               | +          | 1 1 0 0 1 1 2 2 | 3                                         |
| 4 |                                                                           | 3 4                  | 3               | +          | 1 1 0 0 1 2 2 2 | 7                                         |
| 5 |                                                                           | 8                    | 4               | +          | 1 1 0 0 2 2 2 2 | 1 5                                       |
| 7 | We have two '0' in CR, go directly to Carriage 7                          | 1 8 6 4              | 7               | +          | 1 2 0 0 2 2 2 2 | 7 9                                       |
| 8 | The Result: 207                                                           | 7 9<br>1 2 8         | 8 7 6 5 4 3 2 1 | +          | 2 2 0 0 2 2 2 2 | 2 0 7 15 14 13 12 11 10 9 A 7 6 5 4 3 2 1 |

Bernard Stabile - 2023